Bank Customer Classification in Indonesia: Logistic Regression Vis-à-vis Artificial Neural Networks
نویسندگان
چکیده
This paper aims to identify factors distinguish Islamic and conventional bank customers in Indonesia. It tries to relate between bank customers’ religiosity, assessment upon certain factors such as bank performance, bank advertisement and main reasons of using banking services towards their decision on which bank they had joined. Logistic regression and neural networks models are used to answer the research questions based on 520 customers reside in Jakarta. Data collection is done through a direct survey using self administered questionnaire. The results from logistic regression and neural networks models demonstrate that shariah compliant issues, customers’ awareness on the fatwa announced by National Ulama Council on the impermissibility of bank interest, safety of fund as main reason of using banking services and customers’ perception on bank advertisement are the significant factors which classify the bank customers in Indonesia. Nonetheless, neural network classifies better than logistic regression.
منابع مشابه
The Comparison of Credit Risk between Artificial Neural Network and Logistic Regression Models in Tose-Taavon Bank in Guilan
One of the most important issues always facing banks and financial institutes is the issue of credit risk or the possibility of failure in the fulfillment of obligations by applicants who are receiving credit facilities. The considerable number of banks’ delayed loan payments all around the world shows the importance of this issue and the necessary consideration of this topic. Accordingly...
متن کاملCustomer Satisfaction and Switching Behavior in Islamic Banking: Evidence from Indonesia
This study is aimed at investigating the dimensions of customer satisfaction in Indonesia Islamic banking industry and how those dimensions could affect the customers’ switching behavior. Data collection is done by using self administered questionnaire and involves as many as 732 Islamic bank customers from the area of Jakarta. The methods used in this study are factor analysis and logistic reg...
متن کاملEstimating Student Retention and Degree-Completion Time: Decision Trees and Neural Networks Vis-à-Vis Regression
Understanding student enrollment behavior is a central focus of institutional research in higher education. However, in the eyes of an enrollment management professional, the capacity to explain why students drop out, why they transfer out, or why some graduate quickly while others take their time may be less critical than the ability to accurately predict such events. Being able to identify wh...
متن کاملCredit Risk Measurement of Trusted Customers Using Logistic Regression and Neural Networks
The issue of credit risk and deferred bank claims is one of the sensitive issues of banking industry, which can be considered as the main cause of bank failures. In recent years, the economic slowdown accompanied by inflation in Iran has led to an increase in deferred bank claims that could put the country's banking system in serious trouble. Accordingly, the current paper presents a prediction...
متن کاملRapid and Simultaneous Determination of Montelukast, Fexofenadine and Cetirizine Using Partial Least Squares and Artificial Neural Networks Modeling
Simultaneous determination of pharmaceutical compounds and accurate quantitative prediction of them are of great interest in the clinical and laboratory-based investigations.This work has focused on a comprehensive comparison of Partial Least-Squares (PLS-1) and Artificial Neural Networks (ANN) as two powerful types of chemometric methods. For this purpose, montelukast (MONT), fexofenadine ...
متن کامل